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EE 330

Lecture 21

• Bipolar Process



Exam 1     Friday Sept 22

Exam 2     Friday Oct 20

Exam 3     Friday Nov. 17

Final         Monday Dec 11   12:00 – 2:00 p.m.

Fall 2023 Exam Schedule



Simplified Multi-Region Model
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• Still need conditions for operating in the 3 regions

• This is a piecewise model suitable for analytical calculations

• Can easily extend to reverse active mode but of little use

Forward ActiveSaturation

Cutoff

Review from Last Lecture



Simplified Multi-Region Model
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A small portion of the operating region is missed with this model but seldom operate in 

the missing region

Alternate equivalent model

Conditions

Review from Last Lecture



Further Simplified Multi-Region dc Model

Equivalent Further  Simplified Multi-Region Model 

C BI βI=
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A small portion of the operating region is missed with this model but seldom operate in 

the missing region

Review from Last Lecture



Bipolar Process Description

p-substrate epi



Components Shown

• Vertical npn BJT

• Lateral pnp BJT

• JFET

• Diffusion Resistor

• Diode (and varactor)
Note:  Features intentionally not to scale to make it 

easier to convey more information on small figures

• Much processing equipment is same as used for MOS 

processes so similar minimum-sized features can be made

• But will see that there are some fundamental issues that 

typically make bipolar circuits large





• Small number of masks

• Most not critical alignment / size



• Note some features have very large design rules

• Will discuss implication of this later

















Simplified Multi-Region Model
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• A small portion of the operating region is missed with this model but seldom operate 

in the missing region

Conditions

Process Parameters: {JS, β,VAF} Design Parameters: {AE}

“Forward” Regions  :  β=βF 

• Process parameters highly process dependent 

• JS highly temperature dependent as well,  β modestly temperature dependent

• This model is dependent only upon emitter area, independent of base and collector area !

• Currents scale linearly with AE and not dependent upon shape of emitter

Recall:



• In contrast to the MOSFET where process parameters are independent of 

geometry, the bipolar transistor model is for a specific transistor !

• Area emitter factor is used to model other devices

• Often multiple specific device models are given and these devices are used directly

• Often designer can not arbitrarily set AE  but rather must use parallel 

combinations of specific devices and layouts
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Layer Mappings

n+ buried collector

isolation diffusion (p+)

p-base diffusion

n+ emitter

contact

metal

passivation opening

Notes:

• passivation opening for contacts not shown

• isolation diffusion intentionally not shown to scale



A A’

B’B

Dimmed features with A-A’ and B-B’ cross sections



A A’

B’B
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Detailed Description of First 

Photolithographic Steps Only

• Top View

• Cross-Section View



Mask Numbering and  Mappings

n+ buried collector

isolation diffusion (p+)

p-base diffusion

n+ emitter

contact

metal

passivation opening

Notes:

• passivation opening for contacts not shown

• isolation diffusion intentionally not shown to scale

Mask 1

Mask 2

Mask 3

Mask 4

Mask 5

Mask 6

Mask 7



A A’

B’B

n+ buried collector



A A’

B’B

Mask 1:     n+ buried collector



A-A’ Section

B-B’ Section

Photoresistn+ buried collector maskExposureDevelop



A-A’ Section

B-B’ Section

Implant



A-A’ Section

B-B’ Section

Strip Photoresist



A A’

B’B

p-substrate

n+ buried collector n+ buried collector



A-A’ Section

B-B’ Section

Grow Epitaxial Layer 

Note upward and downward 

diffusion of n+ buried collector



A A’

B’B

p-substrate

n+ buried collector n+ buried collector

Grow Epitaxial Layer 



Mask Numbering and  Mappings

n+ buried collector

isolation diffusion (p+)

p-base diffusion

n+ emitter

contact

metal

passivation opening

Notes:

• passivation opening for contacts not shown

• isolation diffusion intentionally not shown to scale

Mask 1

Mask 2

Mask 3

Mask 4

Mask 5

Mask 6

Mask 7



A A’

B’B

Isolation Diffusion



A

B

Mask 2:   Isolation Deposition/Diffusion

B’

A

’



A-A’ Section

B-B’ Section

Isolation Deposition/Diffusion 
• Photoresist present but not shown

• Deposition and diffusion combined in slides



A A’

B’B

p-substrate

n+ buried collector n+ buried collector

Isolation Diffusion 

A A’

B B’

Have created 5 “islands” of n- material on top of p-- substrate



Mask Numbering and  Mappings

n+ buried collector

isolation diffusion (p+)

p-base diffusion

n+ emitter

contact

metal

passivation opening

Notes:

• passivation opening for contacts not shown

• isolation diffusion intentionally not shown to scale

Mask 1

Mask 2

Mask 3

Mask 4

Mask 5

Mask 6

Mask 7



A A’

B’B

p-base diffusion



A A’

B’B

Mask 3: p-base diffusion



A-A’ Section

B-B’ Section

p-base Diffusion 
• Photoresist present but not shown

• Deposition and diffusion combined in slides
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B’B

p-substrate

n+ buried collector n+ buried collector

p-base  Diffusion 

A A’

B B’



Mask Numbering and  Mappings

n+ buried collector

isolation diffusion (p+)

p-base diffusion

n+ emitter

contact

metal

passivation opening

Notes:

• passivation opening for contacts not shown

• isolation diffusion intentionally not shown to scale

Mask 1

Mask 2

Mask 3

Mask 4

Mask 5

Mask 6

Mask 7



A A’

B’B

n+ emitter diffusion



A A’

B’B

Mask 4: n+ emitter diffusion



A-A’ Section

B-B’ Section

n+ emitter Diffusion 
• Photoresist present but not shown

• Deposition and diffusion combined in slides

Emitter diffusion typically leaves only thin base area underneath
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B’B

p-substrate

n+ buried collector n+ buried collector

A A’

B B’

n+ emitter Diffusion 



A-A’ Section

B-B’ Section

Oxidation 
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p-substrate

n+ buried collector n+ buried collector

A
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B’

Oxidation 



Mask Numbering and  Mappings

n+ buried collector

isolation diffusion (p+)

p-base diffusion

n+ emitter

contact

metal

passivation opening

Notes:

• passivation opening for contacts not shown

• isolation diffusion intentionally not shown to scale

Mask 1

Mask 2

Mask 3

Mask 4

Mask 5

Mask 6

Mask 7



A A’

B’B

contacts



A A’

B’B

Mask 5: contacts



A-A’ Section

B-B’ Section

Contact Openings 
• Photoresist present but not shown

• Deposition and diffusion combined in slides



A A’

B’B

p-substrate

n+ buried collector n+ buried collector
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Contact Openings 

A’



Mask Numbering and  Mappings

n+ buried collector

isolation diffusion (p+)

p-base diffusion

n+ emitter

contact

metal

passivation opening

Notes:

• passivation opening for contacts not shown

• isolation diffusion intentionally not shown to scale

Mask 1

Mask 2

Mask 3

Mask 4

Mask 5

Mask 6

Mask 7



A A’

B’B

metal



A A’

B’B

Mask 6: metal



A-A’ Section

B-B’ Section

Metalization • Photoresist present but not shown



A-A’ Section

B-B’ Section

Pattern Metal 
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p-substrate
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A-A’ Section

B-B’ Section
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A-A’ Section

B-B’ Section
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Mask Numbering and  Mappings

n+ buried collector

isolation diffusion (p+)

p-base diffusion

n+ emitter

contact

metal

passivation opening

Notes:

• passivation opening for contacts not shown

• isolation diffusion intentionally not shown to scale

Mask 1

Mask 2

Mask 3

Mask 4

Mask 5

Mask 6

Mask 7



Pad and Pad Opening 

Epitaxial Layer

Oxidation

Metalization

Protective Layer

Pad Opening

Pad Opening 

Mask

p-substrate



The vertical npn transistor

• Emitter area only geometric parameter that appears in basic device model !

• B and C areas large to get top contact to these regions

• Transistor much larger than emitter

• Multiple-emitter devices often used (TTL Logic) and don’t  significantly

     increase area

• Multiple B and C contacts often used (and multiple E contacts as well if AE large)



The vertical npn transistor

Single-emitter and Double-Emitter Transistor

C B

E1

C B

E1 E2

C B E1

C B E1 E2

Base and Collector are shared



• In contrast to the MOSFET where process parameters are independent of 

geometry, the bipolar transistor model is for a specific transistor !

• Area emitter factor is used to model other devices

• Often multiple specific device models are given and these devices are used directly

• Often designer can not arbitrarily set AE  but rather must use parallel 

combinations of specific devices and layouts

Quirks in modeling the BJT



C B E

Top View of Vertical npn

Cross-Sectional View

A challenge in modeling the BJT



A challenge in modeling the BJT
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A challenge in modeling the BJT
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Lateral flow of base current causes a drop in 

base voltage across the base region
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A challenge in modeling the BJT
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This looks consistent but …

VBRk

IBk

VBLk

VE

• Lateral flow of base current causes a drop in base 

voltage across the base region

• And that drop differs from one slice to the next

• So VBE is not fixed across the slices

• Since current is exponentially related to VBE, affects 

can be significant

• Termed base spreading resistance problem

• Causes “Current Crowding”

• Base resistance and base spreading resistance both 

exist and represent different phenomenon

• Strongly dependent upon layout and contact 

placement

• No good models to include this effect

• Major reason designer does not have control of 

transistor layout detail in some bipolar processes

• Similar issue does not exist in MOSFET because the 

corresponding gate voltage does not change with 

position since IG=0



Top View of Vertical npn

Cross-Sectional View

A challenge in modeling the BJT



Top View of Vertical npn

Cross-Sectional View

A challenge in modeling the BJT

C B E B CE

What can be done about this problem ?



Top View of Vertical npn

A challenge in modeling the BJT
What can be done about this problem ?

• Effects can be reduced but current flow paths are irregular

• Often double rows of contacts used

• Area overhead can be significant 

• Remember emitter area is key design variable



MOS and Bipolar Area Comparisions

How does the area required to realize a MOSFET 

compare to that required to realize a BJT?

Will consider a minimum-sized device in both processes



Stay Safe and Stay Healthy !



End of Lecture 21
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